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ABSTRACT: In several recent papers new gene-detection algorithms were proposed for detecting 
protein-coding regions without requiring learning dataset of already known genes. The fact that 
unsupervised gene-detection is possible closely connected to existence of a cluster structure in 
oligomer frequency distributions. In this paper we study cluster structure of several genomes in the 
space of their triplet frequencies, using pure data exploration strategy. Several complete genomic 
sequences were analyzed, using visualization of tables of triplet frequencies in a sliding window. 
The distribution of 64-dimensional vectors of triplet frequencies displays a well-detectable cluster 
structure. The structure was found to consist of seven clusters, corresponding to protein-coding 
information in three possible phases in one of the two complementary strands and in the non-coding 
regions with high accuracy (higher than 90% on the nucleotide level). Visualizing and 
understanding the structure allows to analyze effectively performance of different gene-prediction 
tools. Since the method does not require extraction of ORFs, it can be applied even for unassembled 
genomes.  
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INTRODUCTION 
With few exceptions, almost all commonly used gene-finding programs employ a learning dataset 
for tuning parameters of a learning rule. In several recent papers new algorithms were proposed for 
detecting coding regions without requiring learning dataset of already known genes. In Bernaola 
(2000) the authors proposed a method developed for unsupervised segmentation of whole DNA 
texts corresponding to the division on coding and non-coding regions. In Audic and Claverie (1998) 
the authors proposed a clustering procedure which uses all available annotated genomic data for its 
calibration. This iterative procedure uses genomic sequences to adjust parameters (that are 
initialized by randomly partitioning a number of small subsequences) of several probabilistic 
sequence models. The algorithm converges fast and gives accuracy up to 90%. In Baldi (2000) it 
was explained that this algorithm is essentially a form of the expectation maximization algorithm 
applied to the corresponding probabilistic mixture model. 

The fact that unsupervised gene-detection is possible and effective (and, to lesser extent, supervised 
learning as well) closely connected to existence of a cluster structure in oligomer distributions. 
Implicitly existence of this structure is known (see, for example, Borodovsky, 1993) and is widely 
used in gene-recognition, but was never visualized and studied in terms of data exploration 
strategies. Visual representations of the structure allows deeper understanding of its properties and 
can serve as useful display for analyzing characteristics of existing gene-finders. 

In this paper we use a method of data visualization to explore the space of frequencies of triplets in 
a sliding window. We demonstrate and analyze the structure of datasets used both for supervised 
and unsupervised learning.  

In this work we do not have purpose to invent principally new gene-prediction tools, but rather 
provide illustrations of the datasets that are utilized by existing prokaryotic gene-finders. Just as one 
quantative illustration, we propose a simple clustering method for detecting coding regions and 
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assess it, using standard measures. Its performance turns out to be similar as of the methods 
mentioned above, as well as of modern prokaryotic gene-finders. In addition, even this simplified 
method, which does not take into account many important details, can have practical value when 
application of ORF extraction strategies is not possible (in the case of unassembled genomes, for 
example, when only chunks of 200-500bp length are available). 

 

Methods 
 

Let us denote a codon frequency distribution as fijk , where i,j,k are in the {A,C,G,T} set, i.e., for 
example, fACG is equal to the relative frequency of the ACG codon in a given coding region. One 
can introduce such natural operations over frequency distribution as phase shifts P(1) , P(2) and 
complementary reversion CR:  
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where î  is complementary to i, i.e., TA =ˆ , Ĉ = G,  etc. 
The phase-shift operator P(n) calculates the new triplet distribution, but now counted with a frame-
shift on n positions, in the hypothesis that no correlations exist in codon order.  Complementary 
reversion constructs the distribution of codons from a coding region in the complementary strand, 
but counted in the forward strand (“shadow” codon usage).  

The phase-shift operator P(n) calculates a new triplet distribution, counted with a frame-shift on n 
positions, in the hypothesis that no correlations exist in the codon order. Complementary reversion 
constructs the distribution of triplets in the complementary strand, counted in the direct strand 
("shadow" codon usage).  

Let us introduce the distance between two distributions as  

∑ −=−
ijk

ijkijkijkijk gfgf . 

It is then natural to expect that the problem of gene recognition can be solved if one of the numbers,  

ijkijk fPf )1(− , ijkijk fPf )2(−  is large enough.  It follows from that remark that after a large number 
of insertion and deletion operations of one base-pair at a time, we would have  

0)1( ≈− ijkijk fPf , 0)2( ≈− ijkijk fPf . 

This is expected to happen in non-coding regions, where frameshifts do not necessarily lead to 
misreading of genetic material, and eventially happen due to mutations.  

Let us introduce a measure of how far fijk is from the shifted distributions:  

( )ijkijkijkijk fPffPfCP )2()1( ,max −−=  

Real (counted directly from genetic texts) triplet frequency distributions in the first and the second 
phases will be denoted as )1(

ijkf , )2(
ijkf , )1(

îjkf , )2(
îjkf .  Let us introduce the term "codon correlation 

contribution measure" as the average distance between real and calculated distributions: 
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We constructed datasets of triplet frequencies for several real genomes and for several model 
genetic sequences, as follows:  

1. Only direct strands of genomes are used for counting triplets; 

2. Every p positions in a sequence, we open a window (x-W/2,x+W/2) of size W and centered 
at position x; here p>>1 is used to reduce sample size of the resulting dataset, otherwise one 
has to deal with sample size of millions of points, while introducing p the sample size s 
[L/p] points, where L is the entire length of the sequence; 

3. Every window, starting from the first base-pair, is divided into W/3 non-overlapping triplets, 
and the frequencies of all triplets fijk are calculated; 

4. The dataset consists of N = [L/p] points; every data point Xi={xis} corresponds to one 
window and has 64 coordinates, corresponding to the frequencies of all possible triplets s = 
1,…,64. Resulting datasets were used both for visualization and clustering. 

The standard centering and normalization on unit dispersion procedure is then applied, i.e., 

s

sis
is

mxx
σ
−=~ ,  where isx~  is the value of the sth coordinate of the ith point after normalization, and 

sm  is the mean value of the sth coordinate, sσ is the standard deviation of the sth coordinate.   

Then we applied principal components algorithm in order to visualize these 64-dimension datasets 
projected onto the 3-dimensional linear manifold spanned by the first three principal vectors of the 
distribution. It is known that projection onto this manifold is only as informative as higher the value 
of v(3) = D(3)/D, where D is the dispersion of the dataset, calculated in 64-dimensional data-space 
and D(3) is the analogous quantity calculated after projecting the vectors into the 3-dimensional 
space. In practice, even if the value of v(3) is not high enough (say, it equals 0.1-0.3), we may still 
try to visualize the dataset, in the hope of being able to pick up qualitative "signals" of presence of 
patterns in the data distribution, as well as to visually represent the dataset.  

 

Results 
Figure 1 presents several distributions calculated for 4 genetic texts.  

In addition to the distribution itself, we introduced two triangles, formed by the points 
fijk, (1)

ijkP f , (2)
ijkP f and ijkf̂ , ijkfP ˆ)1( , ijkfP ˆ)2( , into the figures. The large spheres correspond to the 

points fijk and ijkf̂ , where fijk was calculated from the genome's known annotation. Data-points have 
different shapes and colors, according to whether they are coding or non-coding in one of the two 
strands.  

The explanation of the structures is quite evident: Coding information from windows in the direct 
strand has one of three possible phase shifts. Since this phase shift is not known in advance, 
approximately one-third of the windows fall into the vicinity of the point that corresponds to the fijk 
(0-shift), one-third are close to the )1(

ijkf  (1-shift), and the last third are close to the )2(
ijkf  (2-shift). 

This is also true for the reverse strand, but with the centers corresponding to complementary 
distributions. 

The plots shown at fig.1 are two-dimensional projections of 3D scatters. The first 2 distributions 
show very clear separation on seven clusters; no surprise, that in these cases unsupervised gene-
prediction gives both high specificity and sensitivity. The distribution of triples in s.cerevisiae, 
chromosome IV forms seven clusters as well; though they are not clearly seen on 2D-pictures, 
because two "phase triangles", projected into the principal subspace are positioned on two parallel 
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planes, perpendicular to the direction of the third principal component. The situation is worse in 
case of   p.wickerhhamii mitochondrion genome. In this case distributions of triplets in the direct 
and reverse strands indeed overlap. Fig.1 shows that this is not simply because the triplet 
distributions in direct and reverse strands are similar, but 0-phase of the distribution of triplets in the 
direct strand overlaps with 1-phase of the distribution in the reverse strand, and so on. One can 
predict in this case that gene-recognition procedures will often mix genes in the direct and reverse 
strands, though ORF-strategies can probably resolve this conflict.  

One can see from the pictures that the centers of phase-shifted distributions are close enough to the 
calculated points, demonstrating absence of significant correlations in the order of codons. Indeed, 
the calculated values of CC are not high (see Table 1, CC column.) It means that in real texts 
correlation between subsequent codons is much less then the "inter-phase" difference. 

 

Clusterization 
Having in mind the visual representation of the distribution of data-points, it is possible to propose a 
natural way of segmenting sequences into regions that are homogeneous with respect to the coding 
phase. One would expect that regions with the same coding phase correspond to protein-coding 
regions.  

We must underline, that in this work we do not have purpose to invent a principally new gene-
prediction tool, but rather provide illustrations on the datasets that are utilized by existing 
prokaryotic gene-finders. The gene-finding method we describe below is just an illustration to the 
"seven-clusters" structure of the triplet distributions, and it is intentionally made as simple as it can 
be. Nevertheless, it can be used in the situations where application of ORF strategies is not possible, 
giving rather good performance characteristics.  

Trying to be as simple as we can, we make use of one of the simplest clusterization strategies, 
namely unsupervised K-Means clustering. The clustering is accomplished in the 64-dimensional 
space and the positions of all seven clusters are identified. This is the result of the learning step of 
the procedure. Also one must store the coefficients which were used for normalization (on unit 
dispersion) of the dataset. 

After that step, during classification of all sequence positions, one must assign the corresponding 
cluster label along the whole sequence. This can be done by opening a window of width W at every 
3rd position x of the sequence (x-W/2,x+W/2) and calculating non-overlapping triplet distribution 
inside this window. This distribution, after normalization with the coefficients stored at the previous 
step, corresponds to a point in 64-dimnesional space. Then the closest cluster is determined in this 
space. If it is the central cluster, that point is assigned to be non-coding; otherwise it is assigned to 
one of three possible coding phases. These basic steps of the method are presented graphically on 
fig.2. 

To evaluate the ability of this procedure to differentiate between "coding" and "non-coding" base-
pairs, we used base-level sensitivity and specificity of exon recognition, the measures which are 
commonly used in this case:  

FNTP
TPSn
+

= ,
FPTP

TPSp
+

=  

where TP is the number of true-positives, i.e., coding bases predicted to be coding;  TN is the 
number of true-negatives, i.e., non-coding bases predicted to be non-coding; FP is the number of 
false-positives, i.e., non-coding bases predicted to be coding, and FN is the number of false-
negatives, i.e., coding bases predicted to be non-coding.  

The results are shown in the Sn1 and Sp1 columns of Table 1.  
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We must underline that the procedure is fully automated and does not require any human 
intervention. Neither genomic annotation nor ORF strategy is used. The procedure is completely 
based on opening sliding window every p positions in a text, and "blind" counting frequencies of 
non-overlapping triplets, startiing from the first base-pair. Visualization of datasets can be useful to 
evaluate how reliable prediction will be (measuring compactness of the clusters, for example) and 
to compare prediction with known information. The only parameter - window size - may be visually 
evaluated by comparing pictures of data constructed with various values of W (see the full version 
of the paper on the accompanying web-page.) In fact, the dependence of effectiveness on window-
size is not strong over a rather long interval of W. 

 
Using known data 
In the method described above, the learning process used no information other than sequence itself; 
it was completely "unsupervised". One can also try to make use of some extra knowledge, as 
discussed in the next paragraph. 

Studying a set of training examples (for example, following the strategy of GLIMMER, using long 
ORFs as a training set), it is possible to explicitly calculate the centers of all seven clusters. We 
have done this, using annotation of the analyzed genomes. First, half of the genes were used to 
calculate the centers, and the rest for accuracy testing. Using these seven vectors as centroids, we 
calculated new values for the sensitivity and specificity of gene recognition. They are shown in the 
Sn2 and Sp2 columns of Table 1. Here no clusterization is made at all. We provide these numbers 
only to show how unsupervised learning is close to the supervised classification based on heuristics 
and biological intuition (using long ORFs or homology search, for example). 

 

Our method and GLIMMER gene-finder 
 

Choosing GLIMMER [Salzberg et al., 1998, Delcher et al., 1999] for our analysis was dictated by 
our desire to use a gene-predictor that does not use any learning information, except that can be 
extracted from the genetic sequence itself. In GLIMMER, a learning dataset is formed by extracting 
long ORFs (usually longer than 500 bp) and then a variant of HMM-based predictor is used. Thus 
GLIMMER extrapolates the model of genetic sequence derived from the longest ORFs onto the 
shorter ORFs, which are the genes candidates. It is known that GLIMMER has a tendency to 
produce a lot of false-positive predictions. That version of GLIMMER that we used (version 2.02) 
did not have any model for non-coding regions. It was interesting to understand for us if and how 
many of GLIIMER false-positive predictions are due to this lack. 

GLIMMER gene-finder uses some ORF strategy to detect potential genes. Because of this, we have 
to introduce simple rules for deciding if a given ORF is coding or non-coding, in our "seven-
clusters" methodology. For every ORF, we calculate 64-dimensional vector of it's triplet 
frequencies and find the closest centroid in the triplet frequencies space (the positions of the 
centroids are calculated as it was described earlier). If the closest centroid is the one, which 
corresponds to the correct coding phase (let us denote it by P0), then this ORF is assigned to be 
coding. After this, from all such ORFs in P0 phase we filter out all ORFs that are too distant from 
the P0-centroid (the threshold is determined by an additional parameter), and all ORFs which are 
inside other ORFs in the P0 phase (it means that we take the longest ORF in the P0 phase). 

To test this procedure, we analyzed output of GLIMMER gene-finder (using default settings), using 
the list of ORFs, produced by GLIMMER. Thus, we compare only effectiveness of the measures 
used, and not the details of ORF extraction strategy.  
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In the table 2 we show the results of this comparison, using existing annotations of the genomes in 
GenBank. One must understand that the annotations are far from being perfect and some part of the 
ORFs that we denoted as false positives in the GLIMMER prediction can be unknown putative 
genes (as it is claimed by the authors of GLIMMER). Nevertheless, we find significantly lower 
false-positive rate of our method comparing to the GLIMMER prediction. Analyzing this, in some 
genomes we found that a cluster structure exists in the distribution of false-positive GLIMMER 
predictions. On fig.3 visualization of GLIMMER predictions on the principal components plane is 
shown for Escherichia coli and Caulobacter crescentus for which GLIMMER produces many 
predictions of "additional genes". For example, our analysis shows that 62% of false-positives 
predictions for Escherichia coli and 80% of false positives for Caulobacter crescentus in the 64-
dimensional space of triplet frequencies are closer to the centroid, which corresponds to the CR fijk 
distribution (C0-centroid), while only 2% of true-positive predictions for Caulobacter crescentus are 
close to the C0-centroid. Such discrepancy cannot be explained simply by "presence of unknown 
genes" but it is due to some effect of this HMM-based predictor, which often takes "shadow" genes 
as positive predictions. 

As one can see from table 2, the sensitivity of our method is lower in all cases, comparing to the 
GLIMMER gene-finder, having significatly better specificity. Using annotation of E.Coli, we found 
that from 228 genes predicted by GLIMMER, and not predicted by our method, 121 are annotated 
as predicted only by computational methods, 11 ribosomal genes and 12 transposases. From 24 
genes predicted by our method and not predicted by GLIMMER, 17 are annotated as predicted only 
by computational methods and 3 as ribosomal genes. It is not surprising; it is known that ribosomal 
genes, some other highly expressed genes as well as horizontally transferred genes (the percentage 
of which is estimated as 10% from the overall number, [Medigue, 1991]) can have rather different 
(with respect to the average) codon usage, for example, strongly translationally biased codon usage 
in the case of the ribosomes. It is known also, that preliminary clusterization of genes can enhance 
existing gene-finding procedures [Mathe et al., 1999,2000]. 

 
Window-size dependence 
Figure 4 presents our study of window-size dependence of the algorithm effectiveness for two 
genomes. One can see that the minimal window length, which can be used for the algorithm, is 
about 100 bp. This value is often characterized as a barrier for all gene-prediction methods based on 
the analysis of compositional differences. Then, the sensitivity of the algorithm drops 
monotonically, and, after window size of 400-500 bp, becomes poor. 

 

Information content in the triplet distributions 
In this section we study the information content of the triplet distributions in the genetic texts. The 
question is: what are the contributions to the total amount of information of the triplet distribution, 
how big are the position-specific information, the contribution connected with correlations between 
nucleotides and so on? For this purpose we introduce the notion of mean-field (or context free) 
approximation of the triplet distributions in the following way: 

)3()2()1(
kjiijk pppmf = , ∑=

jk
ijki fp )1( , ∑=

ik
ijkj fp )2( , ∑=

ij
ijkk fp )3( , 

i.e. the mean-field approximation is the distribution constructed from the real triplet distribution 
neglecting all possible correlations in the order of nucleotides. The )(k

ip  are the frequencies of the 
ith nucleotide (i∈ {A,C,G,T}) at the kth position of a codon (k = 1..3). In this way we model the 64 
frequencies of the real triplet distribution using only 12 frequencies of the three position-specific 
nucleotide distributions. 
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It is easy to understand that the phase-shift for mfijk only rotates the upper (position) indexes: 
)1()3()2()1(

kjiijk pppmfP = , ( ) )2()1()3(2)1()2(
kjiijkijk pppmfPmfP == . 

Also it is worth noticing that, applying the P(1) (or P(2))  operator several times to the real triplet 
distribution we will quickly come upon the ( )3()2()1(

kji ppp , )1()3()2(
kji ppp , )2()1()3(

kji ppp ) triangle: 

( ) ijkijk mffP =3)1( . 

The center of this triangle is close to the point 

kjiijk pppm = , 

where the ( ))3()2()1(

3
1

iiii pppp ++=  is the frequency of the ith nucleotide (i∈ {A,C,G,T}). The mijk 

distribution is completely randomized distribution (no correlations, no codon position-specific 
information) and, therefore, has the smallest entropy among all the distributions under our 
consideration. And, this is the hypothetical center of the triplet distributions from all non-coding 
regions. 

Let us consider also the averaged three-phase distribution: 

( ))2()1(

3
1

ijkijkijk
av

ijk ffff ++= . 

In the av
ijkf distribution all position-specific information is eliminated but it still contains some 

information about the correlations in the order of nucleotides. 

One can measure the distance between two distributions gijk and hijk as the relative information of 
the distribution gijk with respect to hijk using the Kullback distance: 

∑=
ijk ijk

ijk
ijkijkijk h

g
ghgD ln),( . 

For our purposes we will use a symmetrized version of the Kullback distance  

( )),(),(
2
1),( ijkijkijkijkijkijk

SYM ghDhgDhgD += . 

To visualize the structure of pair-wise distances between different distributions, we use classical 
metric multidimensional scaling (MDS) (for reference, see, for example, [Torgerson]). The idea of 
the MDS method is to put the points onto the 2D plane in such a way that to preserve the structure 
of the pair-wise distances between the points, given by a distance matrix. The resulting pictures are 
given on the figure 5. The axes of the MDS plot correspond to fictive “principal” coordinates that 
are assigned to the points to preserve the distances between them. Since shift and rotation of the 
scatters do not change the distances, we use such a shift that the m point (the smallest entropy) is in 
the (0,0) point of the plot and the rotation angle such that the fijk (the f point on the plot) is on the 
negative side of the x-axis.  

We connect points fijk, f(1)
ijk, f(2)

ijk by solid line. It is the “three-phases” triangle, corresponding to the 
real triplet distributions in the correct, first and second phases respectively. The second, dashed 
triangle connects the points of the mean-field approximation (mfijk, P(1)mfijk, P(2)mfijk). In the table 3 
we also present the distance matrix calculated for the triplet distributions in H.pylori.  
Let us discuss the general features of the pictures. Qualitatively, the information content (relative 
entropy) of a point on the plots in fig.5 is proportional to the distance from the center of plot (0,0). 
The maximum of information is contained, of course, in the fijk distribution (the f point), which is 
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the most distant point on the plots. For example, in the case of H.pylori, the relative information of 
the tripet distribution equals 0.29. The value is higher in the case of C. crescentus (0.39) and less in 
the case of S.cerevisiae genome (0.18). In fact, high information content of the triplet distribution in 
the correct phase gives more contrast cluster structure and better quality of unsupervised gene 
recogniton. 

The distances DSYM(fijk, f(1)
ijk) and DSYM(fijk, f(2)

ijk)  are approximately equal (0.46 and 0.44, for 
H.pylori) and bigger than the distance between f(1)

ijk and f(2)
ijk (0.32 for H.pylori). This can be 

explained if the correlations in the order of codons in the coding sequences are small (our study 
shows that this is the case for, at least, bacterial and yeast genomes). If so, then the distributions in 
the first and second phases can be reconstructed from the fijk using only position-specific 
frequencies of nucleotides and di-nucleotides. Indeed, the information contents of f(1)

ijk and f(2)
ijk  are 

less than in fijk. (0.19 and 0.19 against 0.29, for H.pylori).  
Shifted distributions are reconstructed from the initial distribution, applying phase-shifts operators 
P(1) and P(2). In all cases these reconstructions (points P1f and P2f), calculated using assumption 
about smallness of correlations in the order of codons, are very close to the real distributions in the 
first and second phases (points f1 and f2 on the plots). 

The “mean-field approximation” triangle is isosceles with it’s center approximately in the mijk point. 
The difference in sizes of the “three-phases” triangle and the “mean-field approximation” triangle 
reflects presence of correlations in the order of nucleotides. In fig.5, this difference is small in the 
case of C. crescentus and considerable in other three genomes. From the table 3, one can see that in 
the case of H.pylori, the average length of the “three-phases” triangle side is 0.41 while the same 
value for the “mean-field approximation” triangle is only 0.16. The loss of information after 
neglecting all correlations in the order of nucleotides (the distance from f to mf points) is 0.21 in the 
case of H.pylori and 0.15 in the case C. crescentus.  
 

Implementation 
All datasets were prepared from sequences in the GenBank flat-file format. The programs used for 
data analysis, including simple implementation of the K-means clusterization algorithm, were 
written in Java and are available with instructions at the accompanying web page: 
http://www.ihes.fr/~zinovyev/bullet/. These programs actively use the BioJava programming 
package. Technically, the data visualization and all illustrations were produced using the 
ViDaExpert data visualization tool under Windows, and are available at the supplementary web-
page. For producing the MDS plots we used a procedure of classical metric multidimensional 
scaling from the Matlab environment. 

 

Discussion 
Seven clusters structure of oligomer distributions in genetic texts plays important role in ability of 
modern gene-finders for unsupervised (and, to lesser extent, also for supervised) learning in 
prokaryotic genomes. Actually existence of the structure makes the prokaryotic gene-finding so 
efficient. Using seven hidden states for hidden Markov modeling approach in gene-prediction was 
introduced long ago (see, for example, Borodovsky, 1993). Though being widely exploited, this 
structure was never visually presented and analyzed by pure data exploratory study means. 

Our study shows relatively high performance of using only short n-mers, like triplets. It means that 
an essential part of the information needed to discriminate between coding and non-coding regions 
is already contained in their triplet distributions. Using hexamer frequencies (that is common 
practice in modern gene-finders) can be more sensitive, but also can lead to certain undesirable 
effects. One needs more sequence information to evaluate hexamer frequencies, and, as a result, this 
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fact can lead to "overfitting" effects, leading to worse specificity. We demonstrated this fact, using 
visual analysis of positive predictions of GLIMMER gene-finder. 

We demonstrated as well that the correlations in the order of codons are small with respect to the 
interphase and "coding-noncoding" distance. This fact is interesting by itself, and is not completely 
trivial. In particular, it implies that in commonly used for gene prediction seven-states HMMs, the 
weights of different (coding) states are not at all independent: their dependence in the case of 
HMMs of order 2, in zero approximation is given by the formulas in the beginning of the 
"Methods" section. Another somehow unexpected observation is that the sizes of clusters in the 
phase triangle are similar. It would be natural to expect the cluster which corresponds to the 
"correct" P0 (or C0) phase to be more compact then P1 (C1) and P2 (C2) clusters, but this is not the 
case.  

From the constructed representations of datasets it is clear that the spatial structure of triplet 
distributions is almost completely determined by two factors: 1) the frequency distribution of the 64 
codons in the coding phase; 2) the dispersion of the codon frequency distribution. The latter one is 
related to the structure of codon usage over all genes in a genome, which is known to be 
inhomogeneous (see, for example, Medigue, 1991), especially in such fast-growing organisms as 
E.Coli and B.Subtilis, where the translational bias shapes the codon usage differently for different 
groups of genes. Nevertheless, the dispersion is smaller with respect to the phase-phase and coding-
noncoding distances, which makes the gene-prediction possible even without preliminary genes 
classification. 

From the figures, it is evident that the distribution structure renders linear discrimination analysis 
(sometimes applied in this situation) inapplicable. Applying linear methods in this case would lead 
to the incorrect conclusion that the dataset is not well-separable and that this measure is less 
effective than others with respect to linear discrimination function. For example, in the case of 
Helicobacter pylori, linear discrimination yields a specificity of ~0.83 (which means many false 
positives), while the method we proposed yields ~0.97. This fact stresses that understanding the 
spatial structure of a learning dataset is necessary for reasonable applications of pattern recognition 
methods.  

Frequency normalization plays an important role in cluster structure formation. It indicates the 
importance in distinguishing coding and non-coding regions of those codons that may not have high 
frequency values but considerably change their frequencies after phase-shift (codons that are 
"prohibited,", due to codon bias.)  

Basically, distribution of non-overlapping triplets that is efficient for gene recognition corresponds 
to a high value of mutual information in three consecutive letters, i.e.,  

∑=
ijk kji

ijk
ijk ppp

f
fM 2log , 

where ip  is the average frequency of the ith nucleotide { , , , }i A C G T∈  This value may be zero 

only in the case kjiijk pppf = .  In this case, we would have ijkijkijk ffPfP == )2()1( , i.e., phase-shift 
does not change the codon distribution.  High values of M guarantee the presence of a “three-phase 
triangle” in the data space, as well as the formation of a cluster structure.   

In this paper, using visual analysis of spatial dataset structure and very simple clustering technique, 
we have shown that using learning dataset is not necessary in order to accurately solve gene 
recognition tasks, at least in that DNA segments with high concentrations of coding information 
(compact genomes). This property is very useful, since the problem of choosing a "good" learning 
dataset is not very well defined (see, for example, [Mathe, Sagot et al.]).  
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The method proposed can be applied for the rough annotation of unassembled genomes, since it 
does not require preliminary extraction of ORFs. This makes it useful for inexpensive genome 
survey projects. Also it allows efficient analysis of performance of existing prokaryotic gene-
finders. One more (and not the least) advantage of the visual representation of oligomer 
distributions is that it facilitates understanding of the subject by those who just enter this field. 
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Table 1 
Summary table of results for assessing the method on the nucleotide level 

 

Sequence L W p ν(3)

% of 
codin

g 
bases

CP CC Sn1 Sp1
 Sn2

 Sp2

 
Helicobacter pylori 
Caulobacter crescentus 
Prototheca wickerhamii  
Saccharomyces cerevisiae chromosome III
Saccharomyces cerevisiae chromosome IV

1643831
4016947

55328
316613

1531929

300
300
120
399
399

120
300

18
99

120

0.35
0.21
0.17
0.16
0.15

90
91
49
69
73

0.68
1.07
0.83
0.45
0.48

 
0.28 
0.16 
0.11 
0.10 
0.09 

0.93
0.93
0.82
0.90
0.89

0.97
0.97
0.93
0.88
0.91

 
0.93 
0.94 
0.84 
0.90 
0.92 

0.98
0.98
0.95
0.90
0.92

 
 

Table 2 
Comparing the method with GLIMMER gene-predictor 

 

CLUSTER GLIMME
R 

Sequence 
Sn Sp  

Sn 
 

Sp 

 
Helicobacter pylori 
Haemophilus influenza 
Escherichia coli 
Bacillus subtilis 
Caulobacter crescentus 
 

0.94
0.93
0.91
0.89
0.89

0.95
0.88
0.87
0.95
0.76

 
0.96 
0.96 
0.96 
0.97 
0.94 

 

0.78
0.84
0.76
0.79
0.60

 
Table 3 

Symmetric Kullback distances between triplet distributions for Helicobacter pylori 

 f f(1) f(2) fav P(1)f P(2)f mf m P(1)mf P(2)mf 
f  0.46 0.44 0.18 0.44 0.45 0.21 0.29 0.41 0.42

f(1)   0.32 0.12 0.06 0.30 0.32 0.19 0.12 0.31
f(2)    0.11 0.35 0.06 0.31 0.19 0.32 0.13
fav     0.14 0.12 0.14 0.08 0.14 0.14

P(1)f      0.31 0.25 0.13 0.06 0.24
P(2)f       0.23 0.12 0.24 0.06
mf        0.05 0.16 0.16
m         0.05 0.05

P(1)mf          0.16
P(2)mf           
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Figure 1. Visualization of genetic sequences in the space of triplet frequencies  

a) b)  
 

c) d)  
 

 

 

 

a) Caulobacter crescentus (GenBank NC_002696); 
b) Helicobacter pylori (GenBank NC_000921); 

c) Saccharomyces cerevisiae chromosome IV (GenBank NC_001136); 
d) Prototheca wickerhamii mitochondrion (GenBank NC_001613). 

 – non-coding,  – exons in forward strand, – exons in complementary strand , 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  



A.N. Gorban et al. / Seven Clusters in Genomic Triplet Distributions 
 
 

 

 
 

Figure 2. Graphical representation of the method. 
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a)  b)  

 

 

 

Figure 3. Visualization of the distribution of predictions of GLIMMER gene-finder  
in 64-dimensional space of codon frequencies.  

Every point corresponds to one ORF. Red and green triangles denote the same structures as 
described at the figure 1.  

a) Escherichia coli. Projection on the 1st and 3d principal components. 
b) Caulobacter crescentus. Projection on the 1st and 2d principal components. 

 
 

 – negative predictions,  – true positive predictions,  – false positive predictions, 
 – fijk,  – ijkfP )1( , ijkfP )2( ;  – ijkf̂ ,  – ijkfP ˆ)1( , ijkfP ˆ)2(  
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Figure 4. Window-size dependence of the algorithm 
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Figure 5. MDS plots (see explanation in the text) representing the structure of Kullback 
distances between different distributions. The solid triangle is the “three-phase” triangle, 
calculated from the real gene sequences. Dashed triangle is the corresponding “mean-field” 
(context free) approximation. 

Annotations:  

ijkff = – real triplet distribution in the correct phase; 

)1(1 ijkff = – real triplet distribution in the first phase; 

)2(2 ijkff = – real triplet distribution in the second phase; 

ijkfPfP )1(1 = – calculated distribution in the first phase; 

ijkfPfP )2(2 = – calculated distribution in the second phase; 

( ))2()1(

3
1

ijkijkijk ffffav ++=  – average distribution of triplets; 

)3()2()1(
kji pppmf =  – the mean-field (context free) approximation of the codon usage,  

)(k
ip – are the frequencies of the ith nucleotide (i∈ {A,C,G,T}) at the kth position of 

codon (k = 1..3). 
)1()3()2()1(1 kji pppmfPmfP ==  – mean-field approximation in the first (shifted) phase; 

)2()1()3()2(2 kji pppmfPmfP ==  – mean-field approximation in the second (shifted) phase; 

kji pppm =  – randomized distribution (the smallest entropy). 

 


